Synthesis, Single-Crystal X-ray Structural Characterization, and Reactivity of a Hexaalkyldiplumbane, TsiMe₂Pb-PbMe₂Tsi, Tsi $=$ (Me_{3Si})₃C

Stephen M. Whittaker, Francisco Cervantes-Lee, and Keith H. Pannell*

Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968

Received May *18,* 1994

Introduction

There is a current interest in the synthesis, structural characterization, and chemical properties of molecules containing a Pb-Pb bond.¹⁻⁷ Of the group 14 elements lead forms the least stable bonds and the majority of compounds that have been structurally characterized contain aryl substituents, and no methyllead compounds have been characterized. We report the use of the trisyl group, $(Me_3Si)_3C$ (Tsi), to stabilize lead-lead bonds in a system that contains only alkyl groups, $TsiMe₂Pb-$ PbMe₂Tsi.

Experimental Section

Preparation of $[{({Me}_3Si)_3C}]Me_2Pb]_2$ **.** A tetrahydrofuran solution (10 mL) of Ph₃SnLi (prepared from 780 mg, 2.02 mmol, of Ph₃SnCl and 47 mg, 6.8 mmol, Li) was added dropwise to a cold (-95 °C) tetrahydrofuran solution (20 mL) of $\{(\text{Me}_3\text{Si})_3\text{C}\}\text{Me}_2\text{PbBr}^8$ (1 g, 1.82 mmol) with vigorous stirring. The solution became orange/brown accompanied by the formation of a white precipitate. The reaction mixture was stirred for 1 h at -90 °C and then allowed to warm to room temperature. Solvent was removed *in vacuo* and the yellow residue was stirred with n-hexane (50 mL) for 1 h. Filtration, followed by removal of the solvent *in vacuo,* gave an orange/yellow solid. Examination of the crude material by ¹H, ¹¹⁹Sn and ²⁰⁷Pb NMR spectroscopy showed the presence of the title compound, **1,** together with $\{(\text{Me}_3\text{Si})_3\text{C}\}\text{Me}_3\text{Pb}$ [¹H (C₆D₆), δ 0.22 (27H, s, SiMe₃), 0.91 (9H, s, PbMe₃); lit.⁸ 0.23, 0.91; ²⁰⁷Pb (C₆D₆), δ 64.4; Ph₃SnMe ¹¹⁹Sn (toluene), δ -90.3] and starting material, $\{ (Me₃Si)₃C\}Me₂PbBr, in the$ approximate ratio 2:4:2: 1.

Crystallization of the crude material from toluene afforded orange crystals of 1 (320 mg, 18%; mp 175 °C dec). Anal. Calcd for $C_{24}H_{66}$ - Si_6Pb_2 : C, 30.74, H, 7.09; Found: C, 30.90, H, 6.95. ¹H(C₆D₆): δ 0.29 **(s,** SiMes), 1.43 **(s,** PbMez). 29Si (cab): 6 0.16 **(s,** SiMes). ²⁰⁷Pb (C₆D₆): δ -48.2. UV/vis (*n*-hexane): λ = 341 nm, ϵ = 1.97 \times 10^4 M⁻¹ cm⁻¹.

Alternative Preparation of $[\{({\bf Me}_3{\bf Si}_3{\bf C}\}M{\bf e}_2{\bf Pb}]_2.$ A tetrahydrofuran solution (10 mL) of $\{(Me₃Si)₃C\}Me₂PbBr (514 mg, 0.94 mmol)$ was stirred with Mg turnings $(15 \text{ mg}, 0.62 \text{ mmol})$ for 18 h. Removal of solvent *in vacuo* gave a yellow residue which was stirred with toluene (30 mL) for 1 h. Filtration followed by removal of solvent *in vacuo* gave a yellow/white solid. Examination by ${}^{1}H$ and ${}^{207}Pb$ NMR spectroscopy showed the presence of 1 (7%), {(Me₃Si)₃C}Me₃Pb (23%), and unreacted {(Me₃Si)₃C}Me₂PbBr (70%).

Photolysis of $\{((Me₃Si)₃C\}Me₂Pb₂$ **in C₆D₆. A C₆D₆ solution (2)** mL) of $[{(Me₃Si)₃C}Me₂Pb]₂ (25 mg, 27 μ mol) in a sealed 5 mm NMR$

- (1) **(a)** Reut, H.; Huber, F. *Z. Anorg. Allg. Chem.* **1976,** *419,* **92. (b)** Kleiner, **N.;** Drager, M. *J. Organomet. Chem.* **1984,** *270,* **151.**
-
- Kleiner, **N.;** Drager, M. *2. Naturforsch, B* **1985,** *40,* **477.** Kleiner, **N.;** Drager, M. *J. Organomet. Chem.* **1985,** *293,* **323.**
-
- Schneider, *C.;* Drager, M. *J. Organomet. Chem.* **1991,** *415,* **349.**
- Mallela, *S.* **P.;** Myrczek, J.; Bemal, I.; Geanangel, R. **A.** *J. Chem.* **Soc.,** *Dalton Trans.* **1993, 2891.**
- (a) Schneider-Koglin, **C.;** Behrends, K.; Drager, M. *J. Organomet. Chem.* **1993,** *448,* **29. (b)** Koglin, **H.-J.;** Behrends, K.; Drager, M. *Organometallics,* **1994,** *13,* **2733.**
- Mallela, *S.* **P.;** Geanangel, R. **A.** *Inorg. Chem.* **1993,** *32,* **602.**
- Glockling, F.; Gowda, N. M. N. *lnorg. Chim. Acta* **1982,** *58,* **149.**

tube with a nitrogen atmosphere was set aside under normal laboratory lighting conditions for 3 days. After **this** time the orange solution had become colorless with the formation of **an** insoluble pale yellow solid. Examination of the solution by ¹H NMR spectroscopy showed the formation of (a) (Me₃Si)₃CH, 59% [¹H, δ 0.14 (27H, s, SiMe₃), -0.80 (1H, s, CH)] and (b) $\{ (Me₃Si)₃C\}Me₃Pb, 41%$.

A blank experiment involving a similar preparation to that above, but with complete covering of the *NMR* tube with aluminum foil, resulted in no observable chemistry.

Photolysis of $\{ \{ (Me_3Si)_3C\}Me_2Pb\}_2$ **in CCl₄. A CCl₄ solution (2)** mL) of $[{Me₃Si)₃C}Me₂Pb]_2$ (25 mg, 27 μ mol) in a sealed 5 mm NMR tube in a nitrogen atmosphere was set aside under normal laboratory lighting conditions for 3 days. After **this** time the orange solution had become colorless with the formation of an insoluble white solid. Filtration followed by removal of the solvent *in vacuo* gave a white residue. The residue was dissolved in C_6D_6 (1 mL) and examined by ¹H and ²⁰⁷Pb *NMR* spectroscopy. The main components were identified as (a) $\{(\text{Me}_3\text{Si})_3\text{C}\}\text{Me}_2\text{PbCl} > 90\%$ [¹H (C₆D₆); δ 0.22 (s, SiMe₃), 1.35 (s, PbMe₂Cl); lit.⁸ 0.23, 1.36; ²⁰⁷Pb (C₆D₆), δ 377.1] and (b) {(Me₃-Si)sC}MesPb, *5%.*

A blank experiment involving a similar preparation to that above, but with complete covering of the NMR tube with aluminum foil, resulted in no observable chemistry.

Photolysis of $[\{({Me}_3Si)_3C\}Me_2Pb]_2$ in the Presence of Propargyl **Bromide.** To a toluene solution (20 mL) of $[\{(Me₃Si)₃C\}Me₂Pb]₂(110$ mg, 0.12 mmol) was added HC_2CH_2Br (30 mg, 0.25 mmol) and the solution was stirred under normal laboratory lighting conditions for 48 h. After this time the orange solution had become colourless with the formation of an insoluble pale yellow solid. Filtration followed by removal of the solvent *in vacuo* gave a white residue. The residue was dissolved in C_6D_6 (1 mL) and examined by ¹H and ²⁰⁷Pb NMR spectrosopy. The main components were identified as (a) {(Me₃Si)₃C}-Me₂PbBr, 90% ^{[1}H (C₆D₆), δ 0.22 (s, SiMe₃), 1.46 (s, PbMe₂Br); lit.⁸ 0.23, 1.46; 207Pb (C6D6), 6 299.51 and (b) {(Me3Si)3C}Me3Pb, *5%.* We found no evidence for the formation of propargyllead derivatives.

Thermolysis of $\{(\text{Me}_3\text{Si})_3\text{C}\}\text{Me}_2\text{Pb}\}_2$ **.** A toluene- d_8 solution (1) mL) of $[\{(Me₃Si)₃C\}Me₂Pb]₂$ (30 mg, 32 μ mol) in a sealed 5 mm *NMR* tube was heated in an oven maintained at 110 "C. After 45 h the solution had become light yellow with the formation of a slight precipitate. Examination by 'H NMR showed the presence of three main components: (a) unreacted $[{(Me₃Si)₃C}Me₂Pb]₂$, 57%; (b) ${(Me₃Si)₃C}Me₃Pb, 18%; (c) (Me₃Si)₃CH, 25%. After 100 h the ratio$ of the components had changed to a:b: $c = 20:32:48$, respectively.

Structural Analysis. All the structure determination data are recorded in Table 1, atomic coordinates are in Table 2, and complete bond lengths and angles are in Tables 3 and 4, respectively.

Results and Discussion

We have found two routes to the formation of a stable

$$
hexaalkyldiplumbane, [\{(Me_3Si)_3C\}Me_2Pb]_2 (1), eqs 1 and 2.
$$

2
$$
\{(Me_3Si)_3C\}Me_2PbBr + Mg \rightarrow [\{(Me_3Si)_3C\}Me_2Pb]_2 (1) + MgBr_2 (1)
$$

$$
\{(Me_3Si)_3C\}Me_2PbBr + [Ph_3Sn]^TLi^+ \rightarrow
$$

The yields of the reactions outlined are poor to moderate, $10-20\%$. Whereas the reaction outlined in eq 1 is an example of a well-established coupling reaction, the mechanism of the tin mediated reaction, eq **2,** is not clear. The other products formed in this reaction were $\{(Me₃Si)₃C\}Me₃Pb$ and $Ph₃SnMe.$ The formation of ${(Me₃Si)₃C}Me₃Pb$ is understandable in terms

of the thermal decomposition of 1 as outlined in eq 3.
\n
$$
[\{(Me_3Si)_3C\}Me_2Pb]_2 \rightarrow \{(Me_3Si)_3C\}Me_3Pb
$$
 (3)

 $1 + \{ (Me_3Si)_3C \} Me_3Pb + Ph_3MeSn (2)$

Independent treatment of complex **1** at 110 "C in toluene resulted in the formation of ${(Me₃Si)₃C}Me₃Pb$. No evidence

1994 American Chemical Society

Table 1. Structure Determination Summary

	Crystal Data
empirical formula	$C_{24}H_{66}Pb_2Si_6$
color; habit	orange plate
cryst size (mm)	$0.20 \times 0.38 \times 0.36$
cryst system	triclinic
space group	P1
unit cell dimens	$a = 8.830(4)$ Å
	$b = 8.896(5)$ Å
	$c = 13.734(8)$ Å
	$\alpha = 92.55(5)^{\circ}$
	$\beta = 104.11(4)^{\circ}$
	$\gamma = 113.65(4)^{\circ}$
V	946.0(9) A ³
z	1
fw	937.7
	1.646 Mg/m ³
density (calcd)	
abs coeff	9.152 mm^{-1} 458
F(000)	
	Data Collection
diffractometer used	Siemens R3m/V
radiation	Mo Ka $(\lambda = 0.71073 \text{ A})$
temp (K)	298
monochromator	highly oriented graphite cryst
2 θ range	$3.5 - 45.0^{\circ}$
scan type	ω
scan speed	variable, 3.00 to 15.00°/min in ω
scan range (ω)	1.20°
bckgd measurement	stationary cryst and stationaryu counter at
	beginning and end of scan, each for
	25.0% of tot. scan time
standard reflcns	3 measd every 97 reflcns
index ranges	$-9 \le h \le 9, -9 \le k \le 9, -14 \le l \le 14$
reflens colled	4762
independent reflcns	2495 ($R_{\text{int}} = 2.82\%$)
obsd reficns	2313 ($F > 3.0\sigma(F)$)
abs corr	semi-empirical
min/max transm	0.1938/1.0000
	Solution and Refinement
system used	Siemens SHELXTL PLUS (VMS)
solution	direct methods
refinement method	full-matrix least-squares
quantity minimized	$\sum w(F_o - F_c)^2$
absolute structure	N/A
extinction corr	$\chi = 0.00027(12)$, where
	$F^* = F[1 + 0.002\chi F^2/\sin(2\theta)]^{-1/4}$
H atoms	riding model, fixed isotropic U
weighting scheme	$w^{-1} = \sigma^2(F) + 0.0013F^2$
no. of params refined	146
final R indices (obsd data)	$R = 3.88\%$, w $R = 5.03\%$
R indices (all data)	$R = 4.12\%$, w $R = 5.15\%$
goodness-of-fit	1.18
largest and mean Δ/σ	0.068, 0.013
data-to-param ratio	15.8:1
largest diff peak	2.10 e Å ^{–3}
largest diff hole	-2.16 e Å $^{-3}$

was obtained for the transfer of the trisyl group to tin, i.e. no formation of ${(Me₃Si)₃C}Ph₃Sn.$ Significant amounts of $(Me₃-$ Si)₃CH were also obtained, reminiscent of the thermal decomposition of both germyl and stannyl trisyl derivatives (Tsi)Me₃E, $E = Ge$, Sn, reported by Glockling et al. from which (Me₃- Si ₃CH was the only product isolated.⁹

The formation of Ph₃MeSn, a transmetalation reaction illustrated in eq 2, is more problematical. In reactions designed to form simple Pb-Sn bonds via salt-elimination reactions, e.g. $Ph_3PbSnMe_2Cl$, $(Mes)_3PbSnMe_3$ $(Mes = mesityl)$, we have isolated good to moderate yields of the aryl transfer products $PhMe₂SnCl$ and $(Mes)Me₃Sn$, respectively, as the sole reaction

Table 2. Atomic Coordinates $(x10^4)$ and Equivalent Isotropic Displacement Coefficients ($\AA^2 \times 10^3$)

	x	y	z	$U(\mathsf{eq})^d$
PЬ	596(1)	4733(1)	4113(1)	31(1)
Si(1)	$-2435(3)$	4311(3)	1890(2)	39(1)
Si(2)	$-3057(3)$	1226(3)	3033(2)	35(1)
Si(3)	$-232(3)$	2299(3)	1867(2)	41(1)
C(1)	$-1441(11)$	3017(10)	2613(6)	32(4)
C(2)	2090(15)	7197(12)	3697(9)	61(5)
C(3)	2553(14)	3717(14)	4589(8)	54(5)
C(4)	$-2036(15)$	366(13)	4086(8)	55(5)
C(5)	$-4452(15)$	$-580(12)$	1983(9)	58(5)
C(6)	$-4584(12)$	1827(12)	3508(8)	49(5)
C(7)	$-1088(18)$	5707(14)	1144(9)	63(6)
C(8)	$-4548(14)$	3025(14)	927(8)	62(6)
C(9)	$-2853(16)$	5724(13)	2736(9)	56(5)
C(10)	1907(14)	3950(15)	1859(9)	63(6)
C(11)	267(16)	542(14)	2339(10)	64(6)
C(12)	$-1521(16)$	1474(15)	497(9)	64(6)

Equivalent isotropic *U* defined as one-third of the trace of the orthogonalized **Uij** tensor.

107.3(4) 112.7(5) 11 1.4(5)

products, e.g. eq 4.1°

 $Pb - C(1) - Si(1)$ $Si(1)-C(1)-Si(2)$ $Si(1)-C(1)-Si(3)$

e.g. eq +.
\n
$$
[Ph_3Pb]^{-}Li^{+} + Me_2SnCl_2 \rightarrow PhMe_2SnCl
$$
 (4)

 $Pb - C(1) - Si(2)$ $Pb - C(1) - Si(3)$ $Si(2)-C(1)-Si(3)$

105.9(4) 107.1(4) 112.0(5)

These observations, coupled with the result described in eq 2, suggest that Pb-Sn bonds, when formed, are very labile with respect to 1,2-aryl (alkyl) migrations from Pb to Sn. Therefore, while we have no direct evidence for the transient presence of ${(Me₃Si)₃C}Me₂PbSnPh₃$, we suggest that a 1,2-Me migration occurs subsequent to Pb-Sn bond formation, eq 5.

$$
\{ (Me3Si)3C \} Me2PbSnPh3 \rightarrow Ph3MeSn
$$
 (5)

This chemistry is reminiscent of the 1,2-aryl- and alkylmigration reactions that are well-established to occur upon thermal, or photochemical, treatment of transition metal complexes of lead, e.g. eq $6.^{11}$

⁽⁹⁾ Glockling, F.; Harriott, P.; Ng. W-K. *J. Chem. Res. (Minipr.)* **1979,** *215.*

⁽¹⁰⁾ Sharma, H.; Villazana, R. J.; Cervantes-Lee, F.; Parkanyi, L.; Pannell, K. H. *Phosphorus, Sulphur, Silicon.* **1994,** *87,* **257.**

^{(11) (}a) Pannell, K. H. *J. Organomer. Chem.* **1980,** *198,* **37.** (b) Pannell, K. H.; Kapoor, R. N. *J. Organomer. Chem.* **1981,214,47.** (c) Pannell, **K.** H.; Kapoor, R. N. *J. Organomet. Chem.* **1984,** *269,* 59.

Figure 1. Structure of 1.

Figure 1. Structure of 1.
\n
$$
(\eta^{5} \text{-} C_{5}H_{5})\text{Fe(CO)}_{2}\text{-}PbR_{3} \xrightarrow[R=Me, Ph]{\Delta, hv} (\eta^{5} \text{-} C_{5}H_{5})\text{Fe(CO)}_{2}\text{-}R + {}^{1}/_{2}R_{4}\text{Pb} (6)
$$

In general it seems that lead-metal bonds are very prone to such 1.2-group migrations, presumably accompanied by elimination of diaryl(alkyl)lead. Only the hexaaryl systems (Ar₆-SnPb) are reported as stable well-characterized compounds containing lead-tin bonds. $4,6$ Furthermore, hexaphenyldiplumbane is reported to be thermally unstable with respect to elimination of Ph_2Pb and formation of Ph_4Pb .¹²

compound 1 is a bright orange compound, λ_{max} (hexane) =
341 nm, presumably due to a low energy $\sigma \rightarrow \sigma^*$ transition, reminiscent of those observed for transition metal-metal bonds.13 The chemistry of such bimetallic transition metal complexes is dominated by their tendency to undergo photochemical cleavage of the metal-metal bond. We have subjected **1** to such conditions, irradiating both with a low pressure mercury lamp and with ambient laboratory light since the λ_{max} is close to the visible region. In both cases decoloration of the solutions occurred leading to products that, although we have no direct ESR evidence, clearly suggest radical formation. The fate of these radicals depends upon the environment, and in CCL high yields of ${(Me₃Si)₃C}Me₂PbCl$ were obtained, eq 7. no direct ESR evidence, clearly suggest
fate of these radicals depends upon the
CCL₄ high yields of $\{(\text{Me}_3\text{Si})_3\text{C}\}\text{Me}_2\text{Pb}$
 $1 \xrightarrow{hv} \{ \{(\text{Me}_3\text{Si})_3\text{C}\}\text{Me}_2\text{Pb} \}$
 $\{ (\text{Me}_3\text{Si})_3\text{C}\}\text{Me}_2\text{PhCl} +$

$$
1 \xrightarrow{hv} [\{(Me_3Si)_3C\}Me_2Pb] \xrightarrow{CCl_4} \{(Me_3Si)_3C\}Me_2PbCl + insoluble material (7)
$$

Other reactions also occur, since **as** with the thermal treatment of 1, small yields of $\{(\text{Me}_3\text{Si})_3\text{C}\}\text{Me}_3\text{Pb}$ were also obtained from

the photochemical treatment, both with ultraviolet irradiation and laboratory lighting. Irradiation in the presence of propargyl bromide led to the formation of ${(Me₃Si)₃C}Me₂PbBr.$

Crystal Structure of 1. The structure of **1** is presented in Figure 1, and the bond lengths and angles are reported in Tables 3 and 4. Of note is the Pb-Pb bond length of $2.968(2)$ Å and Pb-C bond lengths of $2.350(7)$ Å (Pb-trisyl) and $2.233(14)$ and 2.243(10) *8,* (Pb-methyl). These lengths are all longer than those reported in the literature where comparison is possible. There are 6 related organometallic Pb-Pb bonded compounds, $R_3Pb-PbR_3$, whose single crystal structures have been determined. The Pb-Pb bond lengths range from 2.839(2), 2.847(2), and 2.846(2) Å for the various forms of $Ph_3PbPbPh_3¹$ to 2.91 **1(** 1) **8,** for **1,2-bis{tris(trimethyIsilyl)silyl}tetraphenyldilead,** $[{ (Me₃Si)₃Si}Ph₂Pb₁₂$, and 2.908 Å for $[{ (Me₃Si)₃C}Ph₂$ PbPbPh₃, 2.⁵ Since 1 is the first structure to contain leadmethyl groups the Pb-C_{methyl} bond length cannot be compared; however, the Pb $-C_{\text{trisyl}}$ bond length of 2.350(7) \AA in 1 is decidedly longer than that of $2.280(10)$ Å reported for 2, although the large standard deviations for both complexes does not permit a detailed comparison. Taken together these data suggest that increasing steric bulk at the Pb atoms significantly contributes to an elongation of the various lead bonds, and our reported Pb-Pb bond length of 2.968(2) *8,* fits into this trend with the longest reported value by virtue of the two bulky trisyl groups. The bond angles associated with the structure of **1** are in accord with expectation exhibiting a $C_{\text{methyl}}-Pb-C_{\text{methyl}}$ angle contraction from the tetrahedral angle to $103.5(5)$ °, and concomitant increase of the other angles at Pb, especially that of the C_{trisyl} -Pb-Pb angle of 119.2(3)°.

Acknowledgment. We thank the Robert **A.** Welch Foundation, Houston, **TX,** for support of this research (Grant No. *AH-*546).

Supplementary Material Available: Tables **of** anisotropic **dis**placement coefficients $(\mathbf{A}^2 \times 10^3)$ and H-atom coordinates $(\times 10^4)$ and isotropic displacement coefficients $(\mathring{A}^2 \times 10^3)$ (2 pages). Ordering information is given on any current masthead page.

^{(12) (}a) Willemsens, **L.** C.; Van der Kerk, G. J. M. *Investigations in the Field* of *Organolead Chemistry;* Institute for Organic Chemistry, **TNO:** Utecht, The Netherlands, 1965; p 9. (b) Shapiro, H.; Frey, F. W. The *Organic Compounds* of *Lead;* **John** Wiley: New **York,** 1968.

⁽¹³⁾ Wrighton, M. S.; Graff, J. **L.; Luong,** J. C.; Reichel, C. **L.; Robbins, J.** L. **In** *Reactivity* of *Metal-Metal Bonds;* Chisholm, M. H., Ed.; ACS Symposium Series No. 155, American Chemical Society: **Washington,** DC, 1981; Chapter *5.*